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Introduction

Musicians dramatically expanded the application of computer tech-
nology for research and instruction with the advent of the first com-
mercially available microcomputers in the late 1970s. Early applica-
tions were largely dictated by individuals’ access to computer
hardware: the capabilities of the machines in terms of processing
speed, internal memory, and external storage and the availability
of appropriate programming languages. Although this newfound
accessibility alleviated many of the problems associated with large
mainframe and minicomputer systems, many constraints remained,
such as slow processing speeds and memory limitations. For ex-
ample, only a few general purpose programming languages, such as
BASIC and Pascal, were available on early microcomputer plat-
forms, and, because these languages rely primarily on numerical
representational schemes, many conceptual abstractions had to be
overcome to facilitate meaningful musical applications. Some musi-
cal projects were highly amenable to such representation, such as
generating analyses using set theoretic operations, whereas others,
such as creating analyses using implication-realization models,
were not.

Programmers using languages such as BASIC, C, or Pascal fre-
quently rely on the sequentially based “divide and conquer” ap-
proach to programming, in which a problem is repeatedly divided
into smaller problems until an explicit step-by-step method, or algo-
rithm, for attaining a solution is found. Alexander Brinkman (1990)
defines algorithm as “a detailed, unambiguous set of instructions
for accomplishing a particular task™ (p. 917). Algorithms might be
defined to count occurrences of surface-level phenomena, such as
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chords or chord progressions, or to compute statistics on the basis
of the results of such analyses. Designing algorithms to account for
more intangible aspects of musical styles, such as experience, per-
ception, and higher-level organization, proves considerably more
difficult. Fortunately, there are models to assist in dealing with these
sorts of problems.

Developments in the field of Al provide such tools, specifically
ones designed for investigating how people acquire, store, and
employ knowledge. One line of development facilitates the concept
of knowledge-based programming: crealing programs that attempt
to apply human knowledge and problem-solving heuristics for deal-
ing with various nonlinear sorts of problems. In such systems,
knowledge is usually stored in the form of rules and relationships
used by the computer program to deduce solutions to a problem
logically, thereby modeling, or at least mimicking, human reasoning.
Knowledge-based programs are not new, but a lack of sophisticated
Al programming languages designed to work in microcomputer
implementations limited their use in music research until recently.

The programming language Prolog is built around a declarative
model, as opposed to more traditional procedural languages (such
as Pascal and BASIC) that require programmers to state explicitly
each detail of a program and the specific order in which the
instructions are to be executed, thereby forcing the programmer
to concentrate on flow the program solves problems. Prolog pro-
grams are primarily concerned with describing and defining rela-
tionships between objects. In other words, they are concerned
more with what is the nature of a particular problem and what
are the various relationships of the relevant components than
with the procedural details of how that output is obtained. Pro-
log uses the relationships defined by the programmer to search
for solutions to questions posed to the system while working out
many of the procedural details on its own. In addition, Prolog pri-
marily processes and manipulates symbols, a significant step
beyond the numerical methods used by most traditional general
purpose languages. Symbols may he anything from characters,
words, or sentences to representations of graphic images, an
asset that enables the programmer to define properties and rela-
tionships among various symbols and to construct significant
inferences bhetween them. This ability makes Prolog a valuable
tool for much Al research, particularly projects involving natural
language processing, the development of expert systems, intelli-
gent tutorial systems, intelligent user interfaces, and other types
of knowledge-based systems.
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Artificial
Intelligence:
Historical Views

INTRODUCTION 3

Before we can attempt to learn how to write our own declarative
progratns or even grasp the nuances of Al languages such as Prolog,
we need a clear understanding of the nature of Al research and,
more specifically, knowledge-based systems. To attempt a foray into
the field without an awareness of its history—both its successes
and its failures—would prove no more fruitful than trying to under-
take a musical analysis without understanding any music theory—
possible, perhaps, at a very rudimentary level but certainly a painful
and unproductive way to proceed! The remainder of this chapter,
then, is devoted to such an examination. We look briefly at the his-
tory of the field, highlighting some of the more significant events,
and end by taking a peek at some of the more promising music-
related knowledge-based applications.

Relatively few people are aware of the precise nature and potential
use of knowledge-hased systems, in part because Al scientists them-
selves are still attempting to understand and define just what consti-
tutes intelligence, Only when this task is accomplished can we
attempt an adequate definition. For the present, perhaps it is best
for us to examine several definitions. One of the more interesting
viewpoints on Al is presented by John Haugeland (1985):

Artificial Intelligence [is] the exciting new effort to make computers
think. The fundamental goal of this research is not merely to mimic intel-
ligence or produce some fake. Not at all. “Al" wants only the genuine arti-
cle: machines with minds, in the full and literal sense. This is not science
fiction, but real science, based on a theoretical conception as deep as it
is daring: namely, we are, at root, computers ourselves. (p. 2)

Although Haugeland’s concept is certainly colorful, it represents
only one aspect of the more multifaceted views taken by most scien-
tists regarding the actual role of Al research. Yoshiaki Shirai and Jun-
ichi Tsujii (1984) present us with a more traditional perspective:

Broadly considered, artificial intelligence can be viewed from two stand-
points. The first is the scientific standpoint aiming at understanding the
mechanisms of human intelligence, the computer being used to provide sim-
ulation to verify theories about intelligence. The second standpoint is the
engineering one, whose object is to endow a computer with the intellectual
capabilities of people. Most researchers adapt the second standpoint, aim-



76 KNOWLEDGE-BASED PROGRAMMING FOR MUSIC RESEARCH

Figure 3.5 o) Ascmple free structure,

Depth-First Search

diatonic progressions using a diagrammatic representation quite
similar—in fact, identical—to a state space. Figure 3.4, drawn from
their book Tonal Harmony, shows this representation. To use the
model, we need simply to start at any given point in the diagram
and follow the arrows until reaching a desired state. (Dotted lines
represent a motion to any other point in the diagram.)

SEARCH STRATEGIES

We can observe from our previous discussion that the process of
determining an answer, or deducing the validity of a piece of infor-
mation, is carried out by searching a path through a state space. For
this reason most general knowledge-based heuristics are referred to
as search strategies. The remainder of this chapter deals with four
such heuristic models: depth-first, breadth-first, iterative deepening,
and best-first search strategies.

In dealing with any given state space, we must first seek to organize

Strategies our node structure in such a way as to clarify the process of seeking
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Figure 3.5 ) A free structure after figure 3.1.
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an answer. In a more complex state space, such as one we might
model after those in figures 3.1 and 3.2, we can quickly get lost in the
process of working through the various combinations of pathways. In
other words, the exponential nature of the search quickly proves a
significant hurdle for us when working in such an unfocused way. To
facilitate our quest, we can redesign our state space into a series of
downward-branching trees, where we first assign descending entry
paths into the top of each relevant node and then assign any number
of possible descending branches leading out of that node and into
additional lower nodes. Several examples of this can be seen in fig-
ures 3.5. The top of the tree (roof) represents the one possible start
state for that domain, and any bottom node represents a possible
goal state. Because any given query may have more than one goal, or
because the same start state may be used to trace answers {o differ-
ent queries, our tfree can have more than one bottom branch. Since
these conceptualized trees are structures that enable us to seek
answers by employing consistent “downward” paths from top (query)
to bottom (goal), we refer to such searches as depth first, meaning we
find a successful path by simply moving down to the bottom.
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